Patient Risk Prediction Model via Top-k Stability Selection

نویسندگان

  • Jianying Hu
  • Yashu Liu
  • Jimeng Sun
  • Jieping Ye
  • Jiayu Zhou
چکیده

The patient risk prediction model aims at assessing the risk of a patient in developing a target disease based on his/her health profile. As electronic health records (EHRs) become more prevalent, a large number of features can be constructed in order to characterize patient profiles. This wealth of data provides unprecedented opportunities for data mining researchers to address important biomedical questions. Practical data mining challenges include: How to correctly select and rank those features based on their prediction power? What predictive model performs the best in predicting a target disease using those features? In this paper, we propose top-k stability selection, which generalizes a powerful sparse learning method for feature selection by overcoming its limitation on parameter selection. In particular, our proposed top-k stability selection includes the original stability selection method as a special case given k = 1. Moreover, we show that the top-k stability selection is more robust by utilizing more information from selection probabilities than the original stability selection, and provides stronger theoretical properties. In a large set of real clinical prediction datasets, the top-k stability selection methods outperform many existing feature selection methods including the original stability selection. We also compare three competitive classification methods (SVM, logistic regression and random forest) to demonstrate the effectiveness of selected features by our proposed method in the context of clinical prediction applications. Finally, through several clinical applications on predicting heart failure related symptoms, we show that top-k stability selection can successfully identify important features that are clinically meaningful.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disease-Specific Risk Prediction through Stability Selection using Electronic Health Records

Disease-specific risk prediction aims at assessing the risk of a patient in developing a target disease based on his/her health profile. As electronic health records (EHRs) become more prevalent, a large number of features can be constructed in order to characterize patient profiles. This wealth of data provides unprecedented opportunities for data mining researchers to address important biomed...

متن کامل

Prediction Risk and Architecture Selection for Neural Networks

We describe two important sets of tools for neural network modeling: prediction risk estimation and network architecture selection. Prediction risk is defined as the expected performance of an estimator in predicting new observations. Estimated prediction risk can be used both for estimating the quality of model predictions and for model selection. Prediction risk estimation and model selection...

متن کامل

The prediction of lymphedema via the combination of the selected data mining algorithms

Background: Breast cancer is the second leading cause of cancer death in women, after lung cancer. Due to the importance of predicting this disease, the use of data mining methods in medical research is more significant than before. Data mining algorithms can be a great help in preventing the development of lymphedema in patients. The aim Of this study was to create a diagnosis system that can ...

متن کامل

Predictive hidden Markov model selection for decision tree state tying

This paper presents a novel predictive information criterion (PIC) for hidden Markov model (HMM) selection. The PIC criterion is exploited to select the best HMMs, which provide the largest prediction information for generalization of future data. When the randomness of HMM parameters is expressed by a product of conjugate prior densities, the prediction information is derived without integral ...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013